Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Commun (Camb) ; 57(78): 10083-10086, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1404890

ABSTRACT

Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with zinc demonstrate better clinical outcomes. The molecular targets and mechanistic details of the anti-coronaviral activity of zinc remain obscure. We show that zinc not only inhibits the SARS-CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the first crystal structure of the Mpro-Zn2+ complex at 1.9 Å and provide the structural basis of viral replication inhibition. We show that Zn2+ coordinates with the catalytic dyad at the enzyme active site along with two previously unknown water molecules in a tetrahedral geometry to form a stable inhibited Mpro-Zn2+ complex. Further, the natural ionophore quercetin increases the anti-viral potency of Zn2+. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV and all variants of SARS-CoV-2, Zn2+ mediated inhibition of Mpro may have wider implications.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Zinc/chemistry , Animals , Binding Sites , COVID-19/pathology , Catalytic Domain , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Ions/chemistry , Kinetics , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance , Thermodynamics , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL